Cтатьи по темам

Автоматизированное постредактирование МП (3)

Базовая информация о постредактировании МП (11)

Внедрение: взгляд со стороны заказчика (3)

Внедрение услуги по постредактированию МП в компании (3)

Инструкции по постредактированию МП (2)

Обсуждение услуги по постредактированию с заказчиком (1)

Опыт постредакторов (17)

Оценка качества МП, подходы, метрики и инструменты (16)

Предредактирование и контролируемый язык (7)

Производительность и качество (9)

Профиль постредактора (6)

Расчет себестоимости и стоимости услуги по постредактированию (1)

Типология ошибок МП (7)

Тестирование МП и постредактирования МП (7)


   

АВТОМАТИЗИРОВАННОЕ ПОСТРЕДАКТИРОВАНИЕ МП

 

FÉLIX DO CARMO, DIMITAR SHTERIONOV, JOSS MOORKENS, JOACHIM WAGNER, MURHAF HOSSARI, ERIC PAQUIN, DAG SCHMIDTKE, DECLAN GROVES, ANDY WAY

A review of the state-of-the-art in automatic post-editing

 

KONSTANTIN DRANCH

Mix Machine Translation + GenAI

 

MARKUS FREITAG, ISAAC CASWELL, SCOTT ROY

APE at Scale and its Implications on MT Evaluation Biases

 

SANTANU PAL, SUDIP KUMAR NASKAR, MIHAELA VELA, JOSEF VAN GENABITH

A Neural Network based Approach to Automatic Post-Editing

 

БАЗОВАЯ ИНФОРМАЦИЯ О ПОСТРЕДАКТИРОВАНИИ МП

 

A Common Machine Translation Post-Editing Protocol for Academia, Clients, LSPs and Post-Editors

 

TAUS MT Post-editing Guidelines

 

JEFF ALLEN

Post-editing or no post-editing?

Postediting: An Integral Part of a Translation Software Program

How translation professionals can make the choice of investing in an MT software or system solution

 

MURIEL VASCONCELLOS

A comparison of MT postediting and traditional revision

 

LORENA GUERRA MARTÍNEZ

Human Translation versus Machine Translation and Full Post-Editing of Raw Machine Translation Output

 

MIDORI TATSUMI‎

Post-Editing Machine Translated Text in A Commercial Setting: Observation and Statistical Analysis

 

ISABELLA MASSARDO‎

The state of post-editing

 

Kantan Post-Editing Guidelines

 

Introduction: Post-editing in practice – Process, product and networks

   

ВНЕДРЕНИЕ: ВЗГЛЯД СО СТОРОНЫ ЗАКАЗЧИКА

 

ANDREW JOSCELYNE

Chris Pyne: Continuous Growth and Adaptation

 

FALKO SCHAEFER

MT post-editing: How to shed light on the" unknown task"

 

VENTSISLAV ZHECHEV

Machine Translation Infrastructure and Post-editing Performance at Autodesk

 

ВНЕДРЕНИЕ УСЛУГИ ПО ПОСТРЕДАКТИРОВАНИЮ МП В КОМПАНИИ

 

RALPH KRÜGER

Contextualising Computer-Assisted Translation Tools and Modelling Their Usability

 

LUIGI MUZII

A guide to post-editing for project managers

 

PE4PM guide to Russian

   

ИНСТРУКЦИИ ПО ПОСТРЕДАКТИРОВАНИЮ МП

 

UWE MUEGGE

A brief introduction to writing a post-editing guide

 

KE HU, PATRICK CADWELL

A Comparative Study of Post-editing Guidelines

 

ОБСУЖДЕНИЕ УСЛУГИ ПО ПОСТРЕДАКТИРОВАНИЮ С ЗАКАЗЧИКОМ

 

ISABELLA MASSARDO

Post-editing of Machine Translation: Negotiating Projects

 

ОПЫТ ПОСТРЕДАКТОРОВ

 

CAROLINE ROSSI, JEAN-PIERRE CHEVROT

Uses and perceptions of machine translation at the European Commission

 

SHARON O’BRIEN @ JOSS MOORKENS

Towards Intelligent Post-Editing Interfaces

 

Workshop on Post-editing Technology and Practice, 2013

 

GISELLE DE ALMEIDA

Translating the post-editor: an investigation of post-editing changes and correlations with professional experience across two Romance languages

Analysing Post-Editing Performance: Correlations with Years of Translation Experience

 

SILVIO PICININI

eBay MT Language Specialists Series: An Interview about MT

 

NORA ARANBERRY

What Do Professional Translators Do when Post-Editing for the First Time?

 

MAARIT KOPONEN

Comparing human perceptions of post-editing effort with post-editing operations

 

MARIA KOPNITSKY

Post-editing: Blessing or curse for translators?

 

DOROTHY SENEZ

Post-editing service for machine translation users at the European Commission

 

ANA GUERBEROF

What do professional translators think about post-editing?

The role of professional experience in post-editing from a quality and productivity perspective

 

LUCAS NUNES VIEIRA

Cognitive Effort in Post-Editing of Machine Translation: Evidence from Eye Movements, Subjective Ratings, and Think-Aloud Protocols

 

Translators’ perceptions of literary post-editing using statistical and neural machine translation

 

YANFANG JIA, MICHAEL CARL, XIANGLING WANG

How does the post-editing of neural machine translation compare with from-scratch translation? A product and process study

 

TOMÁŠ SVOBODA

The state of the (trade and) art in translation: PEMT automation, MT, and the future

 

ОЦЕНКА КАЧЕСТВА МП, ПОДХОДЫ, МЕТРИКИ И ИНСТРУМЕНТЫ

 

Welcome to the MQM Core Typology

 

DAVID VILAR, JIA XU, LUIS FERNANDO D’HARO, HERMANN NEY

Error Analysis of Statistical Machine Translation Output

 

JOKE DAEMS, ORPHÉE DE CLERCQ, LIEVE MACKEN

Translationese and Post-editese: How comparable is comparable quality?

 

SHARON O’BRIEN

Machine Translatability and Post-Editing Effort: How do they relate?

 

CHRISTIAN FEDERMANN

Appraise: an Open-Source Toolkit for Manual Evaluation of MT Output

 

PHILIPP KOEHN

Simulating Human Judgment in Machine Translation Evaluation Campaigns

 

KAMIL KOS, ONDŘEJ BOJAR

Evaluation of Machine Translation Metrics for Czech as the Target Language

 

MQM Multidimensional Quality Metrics

 

MATTHEW SNOVER AND BONNIE DORR

A Study of Translation Edit Rate with Targeted Human Annotation

 

KISHORE PAPINENI, SALIM ROUKOS, TODD WARD, AND WEI-JING ZHU

BLEU: a Method for Automatic Evaluation of Machine Translation

 

MARTIN THOMA

Word Error Rate Calculation (WER)

 

ARNE MAUSER, SASA HASAN AND HERMANN NEY

Automatic Evaluation Measures for Statistical Machine Translation System Optimization

 

JORG SCHÜTZ

Deploying the SAE J2450 Translation Quality Metric in Language Technology Evaluation Projects

 

MAJA POPOVIC AND ELEFTHERIOS AVRAMIDIS AND ALJOSCHA BURCHARDT AND SABINE HUNSICKER AND SVEN SCHMEIER AND CINDY TSCHERWINKA AND DAVID VILAR AND HANS USZKORE

Learning from human judgments of machine translation output

 

LUCAS NUNES VIEIRA

An Evaluation of Tools for Post-Editing Research: The Current Picture and Further Needs

 

LUCIA SPECIA

Translation Quality Assessment: Evaluation and Estimation

 

ПРЕДРЕДАКТИРОВАНИЕ И КОНТРОЛИРУЕМЫЙ ЯЗЫК

 

E. S. KOKANOVA, M. V. BERENDYAEV, N. YU. KULIKOV

Pre-editing English news texts for machine translation into Russian

 

REI MIYATA, ATSUSHI FUJITA

Understanding Pre-Editing for Black-Box Neural Machine Translation

 

WEIFENG HAN, YINGPING LIANG

Source text pre-editing versus target text post-editing in using Google Translate to provide health services to culturally and linguistically diverse clients

 

ARENDSE BERNTH

Easy English: Preprocessing for MT

 

Machine Translation, Controlled Language, Translation Standards

 

LAURENT SPAGGIARI, FLORENCE BEAUJARD, EMMANUELLE CANNESSON

A Controlled Language at Airbus

 

ASD-STE100. ASD SIMPLIFIED TECHNICAL ENGLISH

 

АНТОН ТАРАСЕНКО

Упрощенный Технический Русский: принципы, преимущества, пути реализации

 

ПРОИЗВОДИТЕЛЬНОСТЬ И КАЧЕСТВО

 

VIL ́EM ZOUHAR, ALEˇS TAMCHYNA, MARTIN POPEL, ONDˇREJ BOJAR

Neural Machine Translation Quality and Post-Editing Performance

 

LUCAS NUNES VIEIRA

From process to product: links between post-editing effort and post-edited quality

 

ANA GUERBEROF

Productivity and quality in the post-editing of outputs from translation memories and machine translation

 

PAUL FILKIN

Solving the Post Edit puzzle

 

REBECCA FIEDERER and SHARON O’BRIEN, Dublin City University

Quality and Machine Translation: A realistic objective?

 

ANA GUERBEROF

Productivity and quality in the post-editing of outputs from translation memories and machine translation

 

MIRKO PLITT, FRANÇOIS MASSELOT

A Productivity Test of Statistical Machine Translation Post-Editing in a Typical Localisation Context

 

Spence Green Jeffrey Heer Christopher D. Manning The Efficacy of Human Post-Editing for Language Translation

 

ANDY WAY, ET AL.

Perception vs Reality: Measuring Machine Translation Post-Editing Productivity

 

ПРОФИЛЬ ПОСТРЕДАКТОРА

 

ISO 18587:2017

Translation services -- Post-editing of machine translation output -- Requirements

 

JOSS MOORKENS, SHARON O’BRIEN

Post-Editing Evaluations: Trade-offs between Novice and Professional Participants

 

ANTHONY PYM

Redefining Translation Competence in an Electronic Age.

Translation Skill-Sets in a Machine-Translation Age

 

Translator2Vec: Understanding and Representing Human Post-Editors

 

VICTOR H. YNGVE, RESEARCH LABORATORY OF ELECTRONICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

THE MACHINE AND THE MAN

 

РАСЧЕТ СЕБЕСТОИМОСТИ И СТОИМОСТИ УСЛУГИ ПО ПОСТРЕДАКТИРОВАНИЮ

 

TAUS MT Post-editing Guidelines

 

ТИПОЛОГИЯ ОШИБОК МП

 

ANNA ZARETSKAYA, MIHAELA VELA, GLORIA CORPAS PASTOR, MIRIAM SEGHIRI

Measuring Post-editing Time and Effort for Different Types of Machine Translation Errors

 

JOKE DAEMS, SONIA VANDEPITTE, ROBERT J. HARTSUIKER, AND LIEVE MACKEN

Identifying the Machine Translation Error Types with the Greatest Impact on Post-editing Effort

 

MAJA POPOVIC, HERMANN NEY

Word Error Rates: Decomposition over POS Classes and Applications for Error Analysis

 

MAJA POPOVIC

Class error rates for evaluation of machine translation output

 

JOKE DAEMS, SONIA VANDEPITTE, ROBERT J HARTSUIKER, LIEVE MACKEN

Identifying the Machine Translation Error Types with the greatest Impact on Post-editing Effort

 

IRINA TEMNIKOVA

Cognitive Evaluation Approach for a Controlled Language PostEditing Experiment

 

DAVID VILAR, JIA XU, LUIS FERNANDO D’HARO, HERMANN NEY

Error analysis of statistical machine translation output

 

ТЕСТИРОВАНИЕ МП И ПОСТРЕДАКТИРОВАНИЯ МП

 

G.M.W. VAN EGDOM, MARK PLUYMAEKERS

Why go the extra mile? How different degrees of post-editing affect perceptions of texts, senders and products among end users

 

ANTONIO TORAL

Reassessing Claims of Human Parity and Super-Human Performance in Machine Translation at WMT 2019

 

MARINA FOMICHEVA, LUCIA SPECIA

Reference Bias in Monolingual Machine Translation Evaluation

 

YVETTE GRAHAM, BARRY HADDOW, PHILIPP KOEHN

Translationese in Machine Translation Evaluation

 

ZARETSKAYA, A. ET AL

Measuring post-editing time and effort for different types of machine translation errors

 

ACL 2019 Fourth Conference on Machine Translation (WMT19)

 

CARLA PARRA ESCARTÍN

Machine translation evaluation made fuzzier: A study on post-editing productivity and evaluation metrics in commercial settings